References

- Abrahams, S. C. & Bernstein, J. L. (1966). J. Chem. Phys. 45, 2745–2752.
- BARTA, Č., DOLEJŠÍ, J. & BOHUN, A. (1970). Krist. Tech. 5, 433–443.
- BARTA, Č., SCHULTZE, D., WILKE, K.-T. & ŽEMLIČKA, J. (1971). Z. anorg. allgem. Chem. 380, 41-44.
- BURBANK, R. D. (1965). Acta Cryst. 18, 88-97.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- GATEHOUSE, B. M. & LEVERETT, P. (1968). J. Chem. Soc. (A), pp. 1398-1405.
- GEBERT, E. & KIHLBORG, L. (1969). Acta Chem. Scand. 23, 221–231.
- Hess, H. & HARTUNG, H. (1966). Z. anorg. allgem. Chem. 344, 157-166.
- International Tables for X-ray Crystallography (1952). Vol I. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.

- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JARCHOW, O., SCHRÖDER, F. & SCHULZ, H. (1968). Z. anorg. allgem. Chem. 363, 58-72.
- KAY, M. I., FRAZER, B. C. & ALMODOVAR, I. (1964). J. Chem. Phys. 40, 504-506.
- KLEVTSOVA, R. F. & BORISOV, S. V. (1967). Dokl. Akad. Nauk SSSR, 177, 1333–1336.
- KLEVTSOVA, R. F. & BORISOV, S. V. (1969). Kristallografiya, 14, 904–907.
- Novák, C. (1973). Czech. J. Phys. A 23, 402-403.
- POLYANSKAYA, T. M., BORISOV, S. V. & BELOV, N. V. (1970). Dokl. Akad. Nauk SSSR, 193, 83–86.
- SELEBORG, M. (1966). Acta Chem. Scand. 20, 2195-2201.
- TEMPLETON, D. H. & ZALKIN, A. (1963). Acta Cryst. 16, 762–766.
- THEWALT, U. & BUGG, C. E. (1973). Acta Cryst. B29, 615-617.
- ÜLKÜ, D. (1967). Z. Kristallogr. 124, 192-219.
- WYCKOFF, R. W. G. (1948). Crystal Structures. Section I. New York: Interscience.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.
- ZALKIN, A. & TEMPLETON, D. H. (1964). J. Chem. Phys. 40, 501–504.

Acta Cryst. (1974). B30, 2593

The Crystal and Molecular Structure of the Bis-(5-ethyl-5-isoamylbarbiturato)bis(imidazole) Complex of Nickel(II)

BY LUIGI NASSIMBENI AND ALLEN RODGERS

Department of Physical Chemistry, University of Cape Town, Republic of South Africa

(Received 14 June 1974; accepted 20 June 1974)

The structure of the title compound has been determined from single-crystal X-ray diffraction data collected on a four-circle diffractometer. The analysis was carried out with 3741 independent reflexions and refined by full-matrix least-squares computations to a final R of 0.056. The crystals are triclinic, space group PT, with a = 10.615 (5), b = 10.544 (5), c = 7.457 (5) Å, $\alpha = 111.156$ (2), $\beta = 97.360$ (2), $\gamma = 82.675$ (2)°, Z = 1. The nickel atom is involved in distorted octahedral coordination; the donor atoms are the deprotonated nitrogen atoms of the barbiturate anions [Ni–N: 2.078 (2) Å], the nitrogen atoms of the imidazole moieties [Ni–N: 2.055 (3) Å] and two centrosymmetrically related barbiturato oxygen atoms [Ni–O: 2.226 (2) Å]. The molecules are linked by N–H···O hydrogen bonds arising from the barbiturato and imidazole N–H groups.

Introduction

The structure of the title compound is another in our series of X-ray determinations on compounds of the general formula $M(II)(barb)_2L_2$ where M is a transition metal, barb is the anion of a substituted barbituric acid and L is an organic base. We have reported in earlier publications the crystal structures of the bis-(5,5'-diethylbarbiturato)bispyridine complex of copper(II) (Caira, Fazakerley, Linder & Nassimbeni, 1973) the bis-(5,5'-diethylbarbiturato)bispicoline dihydrate complex of copper(II) (Fazakerley, Linder, Nassimbeni & Rodgers, 1973, 1974 *a*), the bis-[5-allyl-5-(2-bromoallyl)-

barbiturato]bispyridine dihydrate complex of copper-(II) (Fazakerley, Linder, Nassimbeni & Rodgers, 1974 b) and the bis-(5,5'-diethylbarbiturato)bispicoline complex of zinc(II) (Nassimbeni & Rodgers, 1974). The title compound is thus the first involving nickel and an X-ray analysis was undertaken (i) to determine the molecular structure and hence the coordination type, (ii) to verify that the coordination site on the barbiturate anion is a deprotonated nitrogen atom as has been found in our earlier structures and (iii) to investigate the nature of hydrogen bonding which has been found to be a prominent feature of other structures in this series. 2594

. .

Experimental

Dilute aqueous solutions of NiSO₄, sodium amylobarbitone and imidazole were mixed at room temperature in the molar ratio 1:2:2. Small well defined lightblue crystals formed after several days.

The analysis gave:			
	%C	%H	%N
Calculated:	52.11	6.51	17.37
Experimental:	51.8	6.7	17.8

These figures agreed closely enough to suggest that the complex had the composition NiC₂₈H₄₂N₈O₆ corresponding to the formulation Ni(II) (5-ethyl-5-isoamyl $barbiturato)_2$ (imidazole)₂.

The method of determining the density of the crystals has been described earlier (Caira, Fazakerley, Linder & Nassimbeni, 1973). A crystal of dimensions $0.325 \times$ 0.225×0.100 mm was used. The lattice constants were obtained from a least-squares analysis of the settings of 25 reflexions measured on a diffractometer with Mo K α radiation ($\lambda = 0.7107$ Å). Crystal data are given in Table 1.

Table 1. Crystal data

a = 10.615 Å	$V = 768.97 \text{ Å}^3$
b = 10.544	$D_m = 1.38$ (2) g cm ⁻³
c = 7.457	$D_c = 1.392 \text{ g cm}^{-3}$ for $Z = 1$
$\alpha = 111 \cdot 156^{\circ}$	M.W. 644·7
$\beta = 97.360$	$\mu = 6.86 \text{ cm}^{-1}$ for Mo Ka radiation
$\gamma = 82.675$	F(000) = 342.0
Space group = $P\overline{1}$	•

Intensity data

The intensities were collected at the National Physics Research Laboratory of the CSIR on a Philips PW

Table 3. Hydrogen atoms

Fractional atomic coordinates ($\times 10^3$) and their e.s.d.'s ($\times 10^3$)

	x	У	Z
H(3)	110 (3)	- 501 (3)	- 376 (5)
H(7,1)	344 (3)	-407(4)	189 (5)
H(7,2)	297 (3)	-264(4)	290 (5)
H(8,1)	82 (4)	-330(4)	216 (6)
H(8,2)	129 (4)	-469 (4)	116 (6)
H(8,3)	165 (4)	-402(4)	338 (6)
H(9,1)	425 (3)	- 199 (3)	96 (5)
H(9,2)	456 (3)	- 348 (3)	-27 (5)
H(10,1)	366 (3)	- 286 (4)	- 306 (5)
H(10,2)	339 (3)	- 145 (4)	-181 (5)
H(11)	570 (4)	- 136 (4)	- 92 (5)
H(12,1)	635 (5)	- 359 (5)	- 187 (7)
H(12,2)	579 (5)	- 370 (5)	-418 (7)
H(12,3)	703 (5)	- 297 (5)	- 305 (7)
H(13,1)	482 (4)	-163 (5)	- 491 (7)
H(13,2)	455 (4)	- 29 (5)	- 321 (7)
H(13,3)	597 (4)	-92(5)	-348(7)
H(15)	167 (3)	226 (4)	- 22 (5)
H(16)	239 (4)	216 (4)	- 319 (5)
H(17)	194 (4)	12 (4)	- 578 (5)
H(18)	91 (3)	-112 (3)	-430 (5)

1100 computer-controlled four-circle diffractometer operating in the ω scan mode (scan width = 1.20° and scan speed = $0,04^{\circ}$ s⁻¹). The background and scan times were both 30 s. The horizontal and vertical detector apertures were respectively 2 and 1°.

With graphite-monochromated Mo $K\alpha$ radiation, 4469 reflexions up to $2\theta = 60^{\circ}$ were measured. A reflexion was taken above background if $I_{rel} > 1.65\sigma(I_{rel})$. 728 reflexions die not satisfy this criterion and were omitted as unobserved. Throughout the course of the data collection, three standard reflexions were measured after every 66 reflexions to check stability of operation and crystal decomposition. The variation in intensity of a reference reflexion was observed to be less than 3% of

Table 2. Non-hydrogen atoms

Fractional atomic coordinates and their e.s.d.'s (\times 10⁴) and anisotropic temperature factors and their e.s.d.'s (\times 10⁴)

	x	У	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ni	0	0	0	193 (2)	84 (2)	164 (2)	3 (1)	62 (2)	17 (2)
N(1)	657 (2)	-2042 (2)	-1231(3)	198 (9)	94 (8)	196 (10)	-2(7)	51 (8)	4 (7)
C(2)	427 (2)	-3229(2)	-2709(3)	219 (11)	109 (10)	172 (11)	-17(11)	65 (9)	12 (8)
N(3)	1285 (2)	-4369(2)	-2858(3)	256 (11)	93 (9)	260 (11)	-6(8)	11 (9)	-26(8)
C(4)	2368 (3)	-4415 (3)	-1681(4)	252 (13)	138 (11)	267 (13)	-13(9)	68 (10)	33 (9)
C(5)	2669 (2)	- 3105 (2)	-3(4)	204 (11)	14 (10)	204 (11)	2 (8)	37 (9)	45 (9)
C(6)	1667 (2)	- 1938 (2)	54 (4)	206 (11)	113 (9)	201 (11)	-18 (8)	76 (9)	50 (8)
C(7)	2730 (3)	- 3398 (3)	1896 (4)	398 (17)	298 (15)	276 (14)	22 (12)	23 (12)	157 (12)
C(8)	1528 (4)	- 3893 (4)	2215 (6)	569 (24)	539 (23)	472 (21)	10 (18)	191 (18)	326 (19)
C(9)	3975 (3)	-2712(3)	-230(5)	196 (12)	268 (13)	366 (16)	-18(10)	32 (11)	117 (12)
C(10)	3995 (3)	-2256(4)	-1942 (5)	201 (13)	451 (18)	451 (18)	-54(12)	44 (12)	255 (15)
C(11)	5304 (3)	-1935 (4)	-2213(5)	234 (14)	465 (19)	443 (19)	-87(13)	76 (13)	163 (15)
C(12)	6203 (5)	-3221(6)	- 2899 (9)	420 (24)	718 (33)	1076 (44)	160 (22)	356 (26)	329 (31)
C(13)	5198 (4)	-1137 (6)	-3559 (8)	456 (23)	851 (35)	832 (34)	-201(23)	111 (23)	508 (30)
O(2)	- 501 (2)	-3314(2)	-3884(3)	308 (11)	205 (10)	303 (11)	-2(8)	-45(9)	-27(8)
O(4)	3057 (2)	- 5462 (2)	-1947 (4)	405 (13)	167 (10)	530 (15)	111 (9)	0(11)	15 (10)
O(6)	1771 (2)	- 786 (2)	1351 (3)	279 (10)	137 (8)	211 (9)	-30(7)	37 (7)	2 (7)
N(14)	1041 (2)	468 (2)	-1783(3)	248 (11)	185 (10)	258 (11)	5 (8)	78 (9)	89 (9)
C(15)	1597 (3)	1648 (3)	-1423 (5)	362 (16)	220 (13)	452 (18)	-65(12)	137 (14)	82 (13)
C(16)	2071 (3)	1625 (4)	-3014 (6)	362 (17)	387 (18)	622 (24)	- 86 (14)	154 (16)	300 (17)
N(17)	1814 (3)	389 (3)	-4427 (4)	392 (16)	518 (18)	333 (15)	5 (13)	138 (12)	203 (13)
C(18)	1199 (3)	-259 (3)	-3621 (4)	310 (14)	293 (14)	239 (13)	-8 (11)	83 (11)	92 (11)

LUIGI NASSIMBENI AND ALLEN RODGERS

Table 4. Observed and calculated structure factors

Reflexions marked with an asterisk are unobserved.

10F0 10FC	10F0 10FC	10FC 10FG	1CF0 1CFC	15F0 13FC	10F0 12FC	16FC 16FC	lufo lofc	1070 10FC	10FC 1LFC	13F0	1070	13F0 13F
	éllililikourreren keurrela ililili ühilililiku analasten antur antornelain tilte äteisilililililirereesen anal 1915-1915:1915:1915:1915:1915:1915:1915:		<u>tittituuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu</u>			terthornererer kraititititititititititititititititititit	eese sesenvolululululute bladinterves voolulul wroot diddervese sesenation, duululutervese BEGessesenolululue Stree jagereinsteinever jarnenfingepeete jarnenis jarnenis jarnenis jarnenistentiesta jaugustisteres jarneniste 2020 harreitesteres jarnenis jarnenis jarnenis jarnenis jarnenistentiesta jarnenistentiesta jarnenistentee 2020 harreitesteres jarnenis inseeres jarnenis jarnenistentie seeresteritesta jarnenistentiese jarnenistenteese	unerligetettett ührigerungen eresten erestenen eresteneligetet ähriseselektenen sons vonden unser sons interlik 2002000000000000000000000000000000000				

Table 4 (cont.)

1070 1010 1110 1010 1110 1010 1110 1010 1110 1010 1110 1010 1110 1010
2110***********************************
JU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1911 111 1120 114 140 114 140 140 140 140 140 140 14
לאיז הליב היו
Labritik Attaut sisikinnumeneen erevenentikisöstadotti tisiteininneneese evenentikisöstad atsisäkkonnee nechnisös verneshi
10/00000000000000000000000000000000000
10141414191410141014191414 MIGROOPACATOR AND
איאיאיש איאישרער אישראישרער אישרער
איאני מהתרכריאלאלידעל איל שלאיני מרלועיני לאילידאלא איל איני אילא איני איל איני אילא איני אילא איני איני

Table 4 (cont.)

11111111111111111111111111111111111111
dennesses severalititititititititititititititititititit
0 7 4 1
נפאאי אילדענטוןיי בעוצינטיניי ביניינידילידייינייניינייניינייניינייניינייניינייני
Litornes mechided mechi deuterness usvennetedes austationnesses usvensennetationed austationausses. Assessmentation
10 FC 2832277 10864718720514413131451 2234243532215512444555 22851245512555 2285124555 22851245555 22851245555 22851245555 2285124555555 2285124555555 228512455555 2285124555555 2285124555555 2285124555555 2285124555555 2285124555555 22851245555555 2285124555555555555555555555555555555555
aller and the substant around the substant even substant and an and aller states are around the second second and the second
אינינינין איניניני איניגיאין איניגיאין איניגיאינען גייעער איניגיאינעראיניגעער איניגעעראיניאין איניגעעראיניגעער
· · · · · · · · · · · · · · · · · · ·
LOFO 111
2444777 WINDERSTER BERTRENER WINDERST 25 252151 LEISES 2522 LEISESSE 252522 252522 252522 252522 252522
- 22 - 22 - 22 - 22 - 22 - 22 - 22 - 2
מלואליאלי איניאליאניי איניאניאני איניאניאני איניאניאני איניאניאני איניאניאניאני איניאנאניאניאניאניאניאניאניאני

its mean value. Lorentz-polarization corrections were applied. However, absorption corrections were ignored as the variation in μR was between 0.03 and 0.14 with corresponding A^* values of 1.00 and 1.18 for the θ range 0 to 30°. This was regarded as insignificant.

Structure determination and refinement

In space group PI, the Ni atom must lie on a centre of symmetry and the other atoms in general positions. All 22 non-hydrogen atoms were located in a Fourier synthesis phased on Ni at 0,0,0. Before refinement $\ddot{R} = \sum (||F_o| - |F_c||) / \sum |F_o|$ was 0.371. Initially, atoms 16 and 17 in the imidazole ring were arbitrarily assigned as nitrogen and carbon respectively. After 4 cycles the isotropic refinement (CRYLSO: X-RAY System, 1972) terminated at an R of 0.112. At this stage the bond lengths and angles within the imidazole ring were calculated (BONDLA: X-RAY System, 1972). Consideration of these, together with the temperature factors. indicated that atoms 16 and 17 had in fact been incorrectly assigned. They were accordingly interchanged and anisotropic temperature factors of the form: T = $\exp\left[-2\pi^{2}(U_{11}h^{2}a^{*2}+U_{22}k^{2}b^{*2}+U_{33}l^{2}c^{*2}+2U_{12}hka^{*}b^{*}\right]$ $+2U_{13}hla^*c^*+2U_{23}klb^*c^*)$] were introduced into the refinement. After 2 cycles, R dropped to 0.070. All 21 hydrogen atoms were located in a difference synthesis and were assigned the isotropic temperature factors of the atoms to which they were bonded. After the final cycle of refinement the average e.s.d. in the positional and anisotropic temperature factors of the non-hydrogen atoms was more than 50 times the average parameter shift. The average e.s.d. in the hydrogen atomic positions was about five times the average parameter shift. The final R was 0.056. As a final check of the correctness of the structure, a difference synthesis with the structure factors calculated in the last cycle of refinement was computed. This map was practically featureless.

Scattering factors were obtained from Cromer & Mann (1968). The nickel was treated as Ni^o and the anomalous dispersion correction $(\Delta f'=0.4$ for Mo Ka radiation) was applied. Extinction was not regarded as being significant and no correction was made. Each reflexion was assigned unit weight.

The final positional and thermal parameters for the non-hydrogen atoms are given in Table 2 and the positional parameters of the hydrogen atoms in Table 3. The observed and calculated structure factors are listed in Table 4.

All computations were performed on a Univac 1106 computer.

Description of the structure and discussion

The structure of the molecule is shown in Fig. 1 [*PLUTO*: Motherwell, W. S. D. (Cambridge). To be published]. The intramolecular bond lengths and angles and their associated e.s.d.'s are given in Tables 5 and 6

Table 5. Intramolecular bond lengths and their e.s.d.'s (\AA)

$\begin{array}{l} \text{Ni} & \text{N}(1) \\ \text{N}(1) &\text{C}(2) \\ \text{C}(2) &\text{N}(3) \\ \text{N}(3) &\text{C}(4) \\ \text{C}(4) &\text{C}(5) \\ \text{C}(5) &\text{C}(6) \\ \text{C}(5) &\text{C}(6) \\ \text{C}(2) &\text{O}(4) \\ \text{C}(6) &\text{O}(4) \\ \text{C}(6) &\text{O}(4) \\ \text{C}(6) &\text{O}(6) \\ \text{C}(5) &\text{C}(7) \\ \text{C}(7) &\text{C}(8) \\ \text{C}(5) &\text{C}(9) \\ \text{C}(5) &\text{C}(9) \\ \text{C}(9) &\text{C}(10) \\ \text{C}(10) & -\text{C}(11) \\ \text{C}(11) & -\text{C}(12) \end{array}$	2.078 (2) 1.362 (3) 1.392 (3) 1.361 (4) 1.529 (4) 1.513 (4) 1.221 (3) 1.221 (3) 1.210 (4) 1.258 (3) 1.546 (5) 1.515 (6) 1.543 (4) 1.522 (6) 1.526 (5) 1.518 (6)	$\begin{array}{c} N(3)H(3)\\ C(7)H(71)\\ C(7)H(72)\\ C(8)H(81)\\ C(8)H(82)\\ C(8)H(83)\\ C(9)H(91)\\ C(9)H(91)\\ C(10)-H(101)\\ C(10)-H(102)\\ C(10)-H(102)\\ C(11)-H(11)\\ C(12)-H(121)\\ C(12)-H(122)\\ C(12)-H(123)\\ C(13)-H(131)\\ C(13)-H(132) \end{array}$	0.78 (3 0.97 (4 0.92 (3 0.92 (4 0.96 (4 0.91 (5 0.98 (3 0.91 (3 0.95 (3) 0.91 (3 0.98 (4 1.00 (3 0.97 (6 0.98 (4 0.98 (5 1.01 (4 1.03 (4
C(0) = R(1) C(2) = O(2)	1.331(3) 1.221(3)	C(9) - H(91) C(0) - H(02)	0.98 (3
C(4) - O(4)	1.210(3) 1.210(4)	C(10) - H(101)	0.91 (3
C(6)O(6)	1.258 (3)	C(10) - H(102)	0.98 (4
C(5) - C(7)	1.546 (5)	C(11)-H(11)	1.00 (3
C(7) - C(8)	1.515 (6)	C(12)-H(121)	0.97 (6
C(5) - C(9)	1.543 (4)	C(12)-H(122)	0.98 (4
C(9) - C(10)	1.522 (6)	C(12)-H(123)	0.98 (5
C(10)-C(11)	1.526 (5)	C(13) - H(131)	1.01 (4
C(11)-C(12)	1.518 (6)	C(13)-H(132)	1.03 (4
C(11) - C(13)	1.511 (8)	C(13)-H(133)	0.87 (5
$N_{1} - N(14)$	2.055 (3)	C(15)-H(15)	0.89 (3
N(14) - C(15)	1.369 (4)	C(16)–H(16)	0.75 (5)
C(15) - C(16)	1.338 (6)	N(17) -H(17)	0·97 (4
C(16) - N(17)	1.382 (5)	C(18)-H(18)	0.93 (3
N(17) C(18)	1.328 (6)		
C(18) - N(14)	1.327 (4)		
Ni——O(6)	2.226 (2)		

Table 6. Intramolecular bond angles and their e.s.d.'s (°)

$N(1) - Ni - N(1^{i})$	180.0 (1)	C(4) - C(5) - C(7) = 108.0 (3)
N(1) - N(14)	89·3 (1)	C(6) - C(5) - C(7) = 109.2 (2)
$N(1) - N(14^{i})$	90.7 (1)	C(5) = C(7) = C(8) = 114.8 (3)
N(14) NI $N(14)$		C(3) = C(7) = C(0) = 1140(3)
N(14) - N(14')	180.0(1)	C(4) - C(5) - C(9) = 108.5 (2)
Ni - N(1) - C(2)	144.1 (2)	C(6) - C(5) - C(9) = 109.3 (2)
N(1) - C(2) - N(3)	118.1 (2)	C(7) - C(5) - C(9) = 109.8 (2)
C(2) - N(3) - C(4)	$126 \cdot 2(2)$	C(5) - C(9) - C(10) 114.6 (2)
N(3) - C(4) - C(5)	117.6(2)	$C(9) - C(10) - C(11) = 114 \cdot 3 (3)$
C(4) - C(5) - C(6)	112.0(2)	C(10) - C(11) - C(12) 111.5 (4)
C(5) - C(6) - N(1)	123.6(2)	$C(10) - C(11) - C(13) 111 \cdot 2(3)$
C(6) - N(1) - C(2)	122.4(2)	$C(12) - C(11) - C(13) 111 \cdot 3 (4)$
C(6)-N(1)-Ni	93·5 (1)	Ni - N(14) - C(15) 128.0 (2)
N(1) - C(2) - O(2)	122.0(2)	N(14)-C(15)-C(16) = 110.3 (3)
N(3) - C(2) - O(2)	119.9(2)	C(15)-C(16)-N(17) 106.3 (4)
N(3) - C(4) - O(4)	120.9 (2)	C(16) - N(17) - C(18) 106.6 (3)
C(5) - C(4) - O(4)	121.5(3)	N(17)-C(18)-N(14) 112.0 (3)
C(5) - C(6) - O(6)	120.1 (2)	C(18) - N(14) - Ni = 126.7 (2)
N(1) - C(6) - O(6)	116.3 (2)	C(18) = N(14) = C(15) = 104.0 (2)
(1) = 0(0)	110 3 (2)	-C(10) - N(14) - C(13) + 104.9 (3)

Fig. 1. The molecular structure of the complex. The superscripted atoms are centrosymmetrically related to the corresponding atoms without superscripts.

respectively (BONDLA: X-RAY System, 1972). Table 7 lists computed least-squares planes with their equations and the distances of various atoms from these planes.

Fig. 2. The nickel coordination sphere.

The nickel coordination sphere

The nickel atom is involved in distorted octahedral coordination and is situated in the centre of a plane defined by the deprotonated donor nitrogen atoms N(1) and $N(1^i)$ of the barbiturate anions and the donor nitrogens N(14) and $N(14^i)$ of the imidazole moieties (plane I). The octahedron is completed by two centrosymmetric barbiturato oxygen atoms, O(6) and $O(6^i)$ which lie above and below this plane.

The Ni–N bond lengths are 2.078 (2) and 2.055 (3) Å for the barbiturate and imidazole ligands respectively. These may be compared with the Ni–N distances of 2.107 (3) and 2.082 (3) Å reported for the structure diaquobis-(2,2'-biimidazole)nickel(II) dinitrate (Mighell, Reimann & Mauer, 1969).

The Ni–O bond length is $2 \cdot 226$ (2) Å. In the structure reported by Mighell *et al.* the water oxygens occupy the octahedral positions at a distance of $2 \cdot 103$ (3) Å while in the structure diaquobisglycinatonickel(II) (Freeman, Gus & Sinclair, 1968) the Ni–O bond distance is $2 \cdot 10$ (1) Å.

The bond angles N(1)–Ni–N(14) and N(1)–Ni–N(14ⁱ) with values 89·3 (1) and 90·7 (1)° respectively indicate regular geometry. However, the distorted octahedral configuration arises from the positions of O(6) and O(6ⁱ) which lie off the normal to plane I (*i.e.* off the 'Z axis'). This may be seen from the angles N(1)–Ni–O(6) and N(14)–Ni–O(6) which are 61·33 (8) and 89·14 (9)° respectively while the 'off the Z axis angle' is $28\cdot73^{\circ}$.

Table 7. Least-squares planes

The equations of	f the planes ar	e expressed in	orthogonalized	space as	PI + QJ + RK = S
------------------	-----------------	----------------	----------------	----------	------------------

Plane I	Square planar coordination around the nickel atom								
Atoms defining the plane Atoms not included in the plane	Ni	N(1)	N(14)	N(1 ¹)	N(14 ¹)	O(2)	O(6)		
Distance from the plane, Å Equation	0∙0 0∙715457	0·0 7 + 0·1375	$\begin{array}{c} 0.0\\5J+0.6849\end{array}$	$\begin{array}{c} 0 \cdot 0 \\ 99K = 0 \cdot 00 \end{array}$	0.0	-2.016	1.952		
Plane II	Through	the 5 at	oms of the	imidazole	ring				
Atoms defining the plane Distance from the plane, Å Equation	N(14) -0·001 0·787851	C(15) 0·001 7−0·42039	C(16) - 0.002 9J + 0.4500	$ N(17) \\ 0.001 \\ 07K = 0.1922 $	C(18) 0·000 27				
Plane III	Through	n the 6 py	rimidine r	ing atoms					
Atoms defining the plane Atoms not included in the plane	N(1)	C(2)	N(3)	C(4)	C(5)	C(6)	0(2)	O(4)	O(6)
Distance from the plane, Å Equation	0·003 0·64340	0·006 (+0·2595	-0.009 7J-0.720	$\begin{array}{c} 0.003\\18K = -0.0\end{array}$	0∙005 5739	-0.008	0.019	-0.001	-0.011
Plane IV	Through	the 9 at	oms of the	trioxopyri	midine rii	ıg			
Atoms defining the plane Distance from the plane, Å Equation	N(1) 0·001 0·646017	C(2) 0·000 (+0·2612	N(3) -0.014 2J - 0.7172	C(4) 0.003 24K = -0.0	C(5) 0·010 5807	C(6) -0.004	O(2) 0·008	O(4) 0·000	O(6) -0.004
Plane V	Through	the aton	ns of the h	ydrocarbor	n chain at	tached at	C(5)		
Atoms defining the plane	C(5)	C(7)	C(8)	C(9)	C(10)	C(11)	C(12)	C(13)	
Distance from the plane, Å Equation	-0.020 - 0.2122	0·055 24 <i>I</i> + 0·95	-0.030 481 <i>J</i> +0.20	-0.027 0.009K = -3	0·049 0·16104	-0.026	-1.147	0.426	
Intersection angles (°)	I & II I & III	35·50 89·85)	II & III III & IV	85.	78 25			
	1 & 1 V	89.61		шav	87.	/9			

Fig. 2 is an illustration of the nickel coordination sphere. Table 8 lists all relevant bond lengths and angles.

Table 8. Bond lengths (Å) and angles (°) and their e.s.d.'s in the nickel coordination sphere

NiN(1)	2.078(2)	$N(1) - N_{i} - O(6)$	61.33 (8)
Ni - N(14)	2.055(3)	N(14) - Ni - O(6)	90.86 (9)
NiO(6)	2.226(2)	$N(1) - Ni - O(6^{i})$	118.67 (8)
N(1) - O(6)	2·199 (3)	$N(14) - Ni - O(6^{1})$	89.14 (9)
N(14) - O(6)	3.052 (4)	O(6) - N(1) - N(14)	71.92 (9)
$N(14^{i}) - O(6)$	3.006 (4)	$O(6) - N(1) - N(14^{i})$	69.94 (9)
N(1) - N(14)	2.906 (4)	O(6) - N(14) - N(1)	43.23 (7)
$N(1) - N(14^{1})$	2.939 (4)	$O(6) - N(14) - N(1^{1})$	76.33 (9)

The imidazole ring

The bond lengths within the ring agree within experimental error with those reported by Wang & Craven (1971) for the bis-(5,5'-diethylbarbiturato)bisimidazole complex of Zn(II) and with those reported by Lundberg (1966) for the complex diimidazolezinc(II) dichloride. The ring is planar, the greatest deviation from the least-squares plane through the five atoms (plane II) being that of C(16) at a distance of 0.002 Å. This plane and plane I intersect at an angle of 35.50° .

The barbiturate ligand structure

The bond lengths for the barbiturate ligand show good agreement with those reported for two polymorphs of the parent 5-ethyl-5-isoamylbarbituric acid (Craven & Vizzini, 1969). In this latter compound, the internal ring angle C(2)-N(1)-C(6) was found to have a mean value of 126.6 (3)° while in the present complex it is 122.4 (2)°. Thus the result of deprotonating N(1) in forming the complex is a closing of the angle despite the fact that N(1) is bonded to nickel.

The pyrimidine ring is planar (plane III), the largest deviation being that of atom N(3) at a distance of -0.009 Å. When the three exocyclic oxygen atoms are included in the calculation, it is seen that the entire trioxopyrimidine ring is planar (plane IV) the largest deviation being that of N(3), again, at a distance of -0.014 Å. The coplanarity of the exocyclic oxygen atoms and the pyrimidine ring atoms is further illustrated by the small angle of intersection of planes III and IV (0.25°). Planes I and III intersect at 89.85°, *i.e.* the plane Ni, N(1), N(14) and the pyrimidine ring plane are perpendicular. Similarly the planes through the two different moieties of the molecule, *i.e.* through the imidazole ring (plane II) and the pyrimidine ring

Fig. 3. The [100] projection of the structure. The intermolecular hydrogen bonding is represented by dotted lines.

(plane III), are approximately normal to each other (85.78°) . The hydrocarbon chain from C(8) through C(5) to C(11) forms a plane (plane V) which is almost normal (87.79°) to the pyrimidine ring plane (plane III). This is consistent with that observed in the parent acid.

Hydrogen bonding

The intermolecular hydrogen bonding is shown as dotted lines in Figs. 3 and 4, the [100] and [010] projections of the structure respectively while the geometry of the interactions is illustrated in Fig. 5. All relevant bond lengths and angles are listed in Table 9.

Each discrete molecule of the complex is linked to four others by $N-H\cdots O$ hydrogen bonds arising from the interaction of the imidazole NH and barbiturate NH groups with barbiturato oxygen atoms.

 Table 9. Bond lengths (Å) and angles (°) and their e.s.d.'s involved in the hydrogen bonding

$H(3) = O(2^{i})$	2.037 (3)
$N(3) - O(2^{i})$	2.878(4)
$N(3) - H(3) - O(2^{1})$	176.7 (2)
H(17)–O(6)	1.961 (2)
N(17)-O(6)	2.935 (4)
N(17)-H(17)-O(6)	161.6 (2)

H(17) of the molecule at x, y, z is hydrogen bonded to O(6) of the molecule at x, y, z-1. As a result of centrosymmetry, H(17ⁱ) of the molecule at x, y, z is hydrogen bonded to O(6ⁱ) of the molecule at x, y, z+1. These bonds form a double linkage joining adjacent molecules along **c** thereby generating an infinite chain of hydrogen-bonded molecules in the z direction. The parallel chains are themselves joined by hydrogen bonds. H(3)

Fig. 4. The [010] projection of the structure. The intermolecular hydrogen bonding is represented by dotted lines.

and O(3) of the molecule at x, y, z are linked to O(2ⁱ) and H(3ⁱ) respectively of the molecule at x, y-1, z-1. These bonds occur as a double bridging linkage in the centre of the yz plane and approximately parallel to the short diagonal of the bc face.

There are thus only two crystallographically distinct hydrogen bonds, $N(17)-H(17)\cdots O(6)$ and N(3)-H(3) $\cdots O(2^i)$. However, each molecule has associated with it a total of eight hydrogen bonds which emanate as four centrosymmetric pairs.

We thank the South African CSIR for the diffractometer data collection. We further thank the CSIR and the University of Cape Town for their respective awards of research grants.

References

- CAIRA, M., FAZAKERLEY, G., LINDER, P. & NASSIMBENI, L. (1973). Acta Cryst. B29, 2898–2904.
- CRAVEN, B. & VIZZINI, E. (1969). Acta Cryst. B25, 1993-2009.
- CROMER, D. T. & MANN, J. (1968). Acta Cryst. A 24, 321-324.
- FAZAKERLEY, G., LINDER, P., NASSIMBENI, L. & RODGERS, A. (1973). Cryst. Struct. Commun. 2, 647–653.
- FAZAKERLEY, G., LINDER, P., NASSIMBENI, L. & RODGERS, A. (1974a). Inorg. Chim. Acta, 9, 193–201.
- FAZAKERLEY, G., LINDER, P., NASSIMBENI, L. & RODGERS, A. (1974b). Cryst. Struct. Commun. In the press.

Fig. 5. The geometry of the hydrogen-bond interactions.

- FREEMAN, H., GUS, H. & SINCLAIR, R. (1968). Chem. Commun. pp. 485-487.
- LUNDBERG, B. (1966). Acta Cryst. 21, 901-909.
- MIGHELL, A., REIMANN, C. & MAUER, F. (1969). Acta Cryst. B25, 60-66.
- NASSIMBENI, L. & RODGERS, A. (1974). Acta Cryst. B30, 1953–1961.
- WANG, B. C. & CRAVEN, B. M. (1971). Chem. Commun. pp. 290-291.
- X-RAY System (1972). Version of June 1972. Technical Report TR-192 of the Computer Science Centre, Univ. of Maryland.

Acta Cryst. (1974). B30, 2602

Structure du Sulfate d'Ammonium et de Glycinium NH₄NH₃CH₂COOHSO₄

PAR SERGE VILMINOT, ETIENNE PHILIPPOT ET LOUIS COT

Laboratoire de Chimie Minérale C, Chimie des Matériaux ERA 314, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier Cedex, France

(Reçu le 4 juin 1974, accepté le 18 juin 1974)

The crystal structure of ammonium glycinium sulphate (NGS) has been solved from three-dimensional data collected on a Weissenberg camera with Cu K α radiation. The crystal of NGS is monoclinic, space group $P_{2_1/c}$ with a=8.262 (7), b=10.073 (8), c=8.632 (8) Å, $\beta=92.66$ (5)° and Z=4. The structure has been refined to give an R index of 0.079 for 922 independent reflexions. The glycine molecule is a monoprotonated ion. Thus the chemical formula should be written NH₄⁺(NH₃CH₂COOH)⁺SO₄²⁻. The glycine ion is not planar.

Introduction

Il semble que la présence de très courtes liaisons hydrogène O-H···O (ou O-H···F), soit entre deux groupements glycine, soit entre un groupement glycine et un atome d'oxygène (ou de fluor) de l'anion, joue un rôle important dans le comportement ferroélectrique des composés de glycine, en particulier pour le sulfate et fluoroberyllate de triglycine et le nitrate de diglycine (Sato, 1968; Warkusz & Łukaszewicz, 1973).

Nous avons préparé de nouveaux composés contenant un seul groupement glycine: il s'agit des sulfates et fluoroberyllates de glycinium et d'ammonium, de glycinium et de potassium (Vilminot & Cot, 1973).

L'objet de cette publication est la présentation de la structure à 22° C de l'un d'entre eux : le sulfate double